(Government Aided Autonomous institute)

PREVIO US SEMESTER EXAMINATION DECEMBER-2022 Program: CIVIL $S, ~$, $\Delta, 5$ ch (lviv) LeMburation: 03 Hours
Course Code: BS-PTC4 31

Maximum Points: 100
Semester: IV

Course Name: PROB ABILITY \& STATISTICS

- Attempt any five out of sever questions
- Use of scientific non-progr'ammable calculator is allowed.

(Goverroment Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Munbai - 400058

PREVIOUS SEMESTER EXAMINATION DECEMBER-2022
 Munshi Nagar, Andheri (W) Mumbai - 400058

PREVIOUS SEMESTER EXAMINATION DECEMBER-2022

1. Attempt any FIVE questions out of SEVEN questions.
2. Answers, to all sub qu'astions should be grouped together.
3. Figures, to the right indicate full marks.
4. Assurne suitable data if necessary and state the same clearly.

Previous Semester Examinations: December 2022

Q.2(a)	State and ex plain Maxwell's reciprocal theorem.	05	2	2	1.3.1
Q.2(b)	For the frame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD \& BMD	15	2	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.3(a)	Find the slope and vertical deflection at the free end C for the beam supported and loaded as shown in figure below. Use conjugate method only.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.3(b)	Find the slope andvertical deflection at the free end \mathbf{C} for the beam supported and loaded as shown in figure below. Use moment area method only.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai -- 400058
Previous Semester: Examinations: December 2022

Q.4(a)	For the pin jointed frame loaded as shown in figure below, find the vertical deflection of joint E.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.4(b)	Determiv, the vertical deflection of point \mathbf{C} of the rigid jointed frame loaded as shown in figure below.	10	3	3,4	$\begin{aligned} & 1.3 .1 \\ & 2.1 .3 \end{aligned}$
Q.5(a)	Using Macaulay's method only, find the slope and vertical deflection at point C for the beam supported and loaded as shown in figure below.	10	3	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$
C. 5 (b)	Find the strain energy stored due to bending moment only for the beam loaded as shown in the figure helow.	10	2	3,4	$\begin{array}{\|l\|l\|} \hline 1.1 .1 \\ 1.3 .1 \\ 2.4 .1 \end{array}$
Q.6(a)	For the fr ame loaded as shown in figure below a) Find the support reactions b) Draw AFD, SFD \& BMD for member AB only	10	4	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$

Pre.vious Semester Dxaminations: December 2022

	A.				
Q.6(b)	Compsare the crippling loads given hy Euler's and Rankine's formialae for: a steel column 3.0 m long with one end hinged and the other end fixed. The cross section of the column is a symmetrical I section with the following dimensions. Top an d bottom Flange width $=200 \mathrm{~mm}$, Top arad bottom Flange thickness $=\mathbf{2 0} \mathbf{~ m m}$, Depth of weh $=\mathbf{3 0 0} \mathbf{~ m m}$, Thickness of weh $=30 \mathrm{~mm}$. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{f}_{\mathrm{c}}=350 \mathrm{MPa}$ and Rant,ine's constant $=1 / 7000$.	10	4	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \end{aligned}$
Q.7(a)	(i) Name the methods of finding deflection in trusses.	02	3	2	1.3.1
	(ii) State and explain Bette's Law.	04	2	2	1.3 .1
	(iii) Write the expression for the strain energy stored in a member due to (a) Bending Moment (b) Twisting moment Explain the terms involved in each expyression	04	4	2	1.3.1
Q.7(b)	J ocate the principal axes and find the principal moments of inertia for the angle section shown in figure helow.	10	1	3,4	$\begin{aligned} & 1.1 .1 \\ & 1.3 .1 \\ & 2.4 .1 \\ & \hline \end{aligned}$

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. Previous Semester Examinations, December 2022

Program: B.Tech. Civil Engineering
Course Code : PC-BTC403
Course Name : Conc rete Technology

sin Δ Ten (civil) Hemin
Duration: 3 Hour
Maximum points: 100
Semester: IV

Instructions:

1. Attempt any FIVE questions out of SEVEN questions,
2. Answers tais all sub questions should be grouped together
3. Draw neat diagrams wherever required
4. Assume; suitable data it necessary and state the clearly.

Q5	(a) What are the precautions to be taken to deal with concrete to be used in extreme weather coridition? (b) How high density concrete is made? Where will you recommend high density concrete? (c) What are the rnodifications made in the revised version of concrete design by Road Nete No. 4 method?	$\begin{gathered} 10 \\ 5 \\ 5 \end{gathered}$	1 2	2 3 2	$2.1 .2$ 1.3.1 2.3.1
Q6	(a) Enlist and describe in brief the various methods of measuring workability of c.oncrete. (b) What type of concrete would you recommend for strengthening the quality of old concrete structures. (c) Explain the reaction mechanism of plasticizer with neat sketch.	$\begin{gathered} 10 \\ 5 \\ 5 \end{gathered}$	1	2 3 3	$\begin{aligned} & \hline 2.3 .1 \\ & \\ & 1.3 .2 \\ & 1.4 .1 \end{aligned}$
Q7	Write explanatrory notes on the following (any Four) i) Under water concrete ii) Iow heat Cement iii) 'Bulking of Sand iv) Curing of Concrete v) Advantages of fly a.sh in concrete vi) PC based admixtures	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	3 2 3	2 2 2 2 2 2	$\begin{aligned} & 1.3 .1 \\ & 1.3 .1 \\ & 1.3 .1 \\ & 1.3 .1 \\ & 1.3 .1 \\ & 1.3 .1 \end{aligned}$

Reference Tables for IS 10262:2019 Method of Concrete mix design

Table 5 Minimum Cement Content, Maximum Water-Cement Ratio and Minimum Grade of Concrete for Different Exposures with Normal Weight Ageregates of 20 mm Nominal Maximum Stre
(Clauses 6.1.2. 8.2.4.1 and 9.1.2)

$\begin{aligned} & \text { SI } \\ & \text { No. } \end{aligned}$	Exposure	Plate Concritar			Refinforced Conerve		
		Minitron Cement Comeat kg m^{*}	Masimum Here WaterCernem Suio	Ninimum Grade of Concrete	Wenimpan Cen.ent Coratent $\$ p / m^{2}$	Maxtinum Free Water. Camen Rutio	Minimum Grade of Conciere
11	(2)	(3)	(4)	(6)	(6)	(7)	(8)
:	Mild	220	0.60	-	300	0.55	M20
(il)	Mosmer	240	0.0	Mis	300	0.50	325
iii)	Severe	250	0.50	M20	320	0.45	M 30
iv)	Very severe	209	14.35	420	340	0.45	M 35
v)	Extreme	280	0.40	1925	360	2.40	M 40

 ant exooed the limus of pozzolone and diag apecifited in is 1489 (Pat !) and is 45S tempectiveijy.
2 Minimum gnde'for ploin contrete ender mild exponare condition in not specified.

Table 4 Water Content per Cubic Metre of Concrete For Nominal Maximum Size of

Table 3 Approximate Air Content (Clause 5.2)

8	Nominal Maxinum Size	Entrapped Air, as No of Aggregate
	Percentage	
(i)	(2)	of Volunte of Concrete

5.2.1 The actual values of air content can also t adopted during mix propartioning, if the site dala (1 least 5 results) for similar mix is available.
(Government Aided Autonomous Institute) Munshi Nagar, Audheri (W) Mumbai - 400058
End Semester December 2022 Examinations (Previous Semesters) $24 / 12122$. Program: B. Tech. Civil Engineering S, Y, М, Fucch Course Code: PE-BTC,404

Courst Name: Suryeying \& Geomatics $\left\{\begin{array}{l}\text { (a) Duration: 3hrs. } \\ \text { (vy) })_{\text {Maximum Points: } 100}\end{array}\right.$

Semester: IV

Notes:

1. There are TOTAL SEVEN MAIN questions, each of 20 points.
2. QDESTION 1 is COMPULSORY.
3. From the remaining SIX Questions Solve ANY FOUR.
4. Assiume suitable data, wherever necessary and State it clearly.
5. Write answer to each cuestion on a new page.
6. Answers to be accompanied with appropriate sketches/facts \& figures/table or chart/graph/diag'cam/flowchart wherever necessary or required.

Page 1 of 3

End Semester December 2022 Examinations (Previous Semesters)

	2. Two tangents iatersect at chainage 1190 m , the deflection angle being 36°. Calculate all the data necessary for setting out a curve with a radius of 300 m by offset from chords method, taking the peg interval of 30 m . (7)				
2.B	1. Enlist atleast 2 satellite navigation systems. (2) 2. Explain prositioning by carrier phase measurements. (4)	6	1,3	1,2	5.1.1
3.A	1. The scale of the photograph is $10 \mathrm{~cm}=100 \mathrm{~m}$. The photograph size is $2.3 \mathrm{~cm} \times 23 \mathrm{crr}$. Determine the number of photographs required to cover an area of $15 \mathrm{~km} \times 10 \mathrm{~km}$, if the long,tudinal overlap is 60% and side overlap is 30%. Also, find the spacing of the flight lines. (6) 2. Calculate the aircraft flying height to obtain the average photo scale of $1 / 7200$. Ground surface elevations vary from 160 m to 430 m . focal length of the camera lens is 153 mm . (4) 3. An image of the top hill is 96 mm from the principal point of the phetograph. The elevation of the top of the hill is 500 m and the flying height is 4000 m above datum. Calculate the relie,f displacement. (4)	14	1,3	3	5.1.1
3.8	1. Cl_{4} ssify the Electronic Distance Measurement Instrument (${ }^{2} \leq \mathrm{DMI}$) based on the working range. (3) 2. State the advantages or benefits of using an EDMI instead of theodolite. (3)	6	1,3	2	5.1.1
4.A	1. A vertical curve is to be designed connecting two uniform grades of $+0.5 \%$ and -0.7%. The chainage and the reduced level of the point of intersection are 500 m and 330.750 m respectively. Take the rate of change of grade as 0.1% per 30 m . Calcula'e: a. Length of the vertical curve. (1) b. Chainage of the tangent points of the curve - beginning point ' O ' and ending peint ' B '. (2) c. Chainage of the point of intersection ' A '. (1) d. Reduced levels at point O, A, B and at vertex ' F ' of the curve. (3) e. Draw 'proper sketch showing all points $\mathrm{O}, \mathrm{A}, \mathrm{B}$, and F . (2)	14	1,3	3	1.1.2
4.3	I. Define 'Triangulation'. (2) 2. State the purpose of Triangulation. (2) 3. Give the classification of triangulation methods. (2)	6	2	5.1.1	
5.A	1. State, the necessity of carves. (3) 2. State the basic requirements of a tacheometer. (3)	6	1,3	2	1.1.2
5.'B	For a transition curve: 1. Define 'Super-elevation'. (2)	8	1,3	2	1.1.2

Page 2 of 3

Munshi Nagar, Audheri (W) Mumbai - 400058
End Semaster Decramber 2022 Examinations (Previous Semesters)

	2. Explain in short 'Sight-distance'. (2) 3. S'ate the fundamental requirements. (2) State the methods of deciding the length of the curve. (2)				
$6 . \mathrm{C}$	Explain how remote fillevation measurement (REM) can be done by using a total station.	6	1,3	2	5.1.1
6.A	1. Calculate the frequency of the greer light that has a wavelength of $5.5 \times 10^{-7} \mathrm{~m}$. (2) [speed of light $=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$] 2. Calculate the wavelength of a microwave that has a frequency of $4.2 \times 10^{8} \mathrm{~Hz}$. (2) 3. Define and describe 'Spectrai reflectance'. (4)	8	1,3	3 	1.1.2
6.8	1. De'íne 'Baseline'. (1) 2. Explain how you will select a site for Baseline. (3)	4	1,3	1	1.1.1
$6 . \mathrm{C}$	Explain the method of locating soundings by conning the survey vessel.	4	1,3	2	5.1.1
$6 . \mathrm{D}$	State the importance of settirig the control points (borizorital and vertical) for esta.blishing the layout of any structure on the ground.	4	1,3	1 2	1.1.1
7.A	A river suivey is to be conducted with a view to determine the bed levels by mears of scundings. Explain in detail, with proper sketch, how yor would carry out the sounding work by the method of two angles from the shore.	10	1,3	1 2	1.1.1
7,3	Explain, with a proper sketch, the method of locating the center line of a bridge by the method of triangulation.	10	1,3	2	5.1.1

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
PREVIOUS SEMESTER EXAMINATION DECEMBER $20223 \% / 12 / 2$
Program:s.Y. B. TECH Lemiv(civil)
Course Code: PC-BTC-405
Course Name: HYDRAULIC ENGINEERING

Notes:

- Attempt any five questions.
- Answer to all sub questions should be grouped together.
- Figure to right indicates full marks.
- Assume suitable data wherever necessary and state it clearly.

Q. No.	Questions				Points	CO	BL	Module No.
	(a)Explain: hydraulic model testing, laws of similarities, distorted and undistorted models in dimensional analysis and state its importance.				10	4	2	1
1	(b) The ' η ' of a fan depends on density ' ρ ' and viscosity of fluid ' μ ', angular velocity ' ω ', diameter ' D ' and discharge ' Q '. Obtain a functional relationship for ' η ' in terms of dimensionless parameters				10	4	4	1
2	(a)Derive: Darcy-Weisbach's equation for major loss of head in pipe flow. Explain all terms used				10	1	2	2
	(b)Explain the phenomenon of water hammer flow in pipelines.				10	1	4	2
3	(a)Explain with neat sketch working of siphon. (b)Three pipes connected in series discharges water from 70 meter level to 40 meter level. The details of piping system are as given below; considering minor losses: determine discharge.				10	1	4	2
					10	1	5	2
	Pipe Length (m) Diameter (cm) Friction Factor (f) 1 1100 20 0.018 2 900 10 0.022 3 1000 15 0.020							
	(a)Explain Impulse Momentum Principle and state its importance in the study of Hydraulic machines.				10	2	2	3
4	(b)A jet of water having velocity ' V ' strikes a single curved vane moving in the same direction as the jet with velocity ' u ', so that the velocity of the jet relative to the vane is (V-u). The vane causes the jet to be reversed in direction. Show that the maximum efficiency is obtained when $\mathrm{V}=3 \mathrm{u}$ and that this maximum efficiency is slightly less than 60%.				10	2	4	3
5	(a)Explain with a neat sketch working of a hydroelectric power plant and compare impulse turbine with reaction turbine.				10	2	2	4
	(b) The penstock supplies water from a reservoir to Pelton wheel with a gross head of 510 m . One third of gross head is lost in friction in penstock. The rate of flow of water through the nozzle is $5 \mathrm{~m}^{3} / \mathrm{s}$. The				10	2	4	4

BharatiyaVidyaBhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute),
Munshi Nagar, Andheri (W) Mumbai - 400058 :
PREVIOUS SEMESTER EXAMINATION DECEMBER 2022

	angle of direction of jet is 165°. Determine power given by water to runner and also hydraulic efficiency of Pelton wheel. Take speed ratio $=$ 0.46 and $\mathrm{CV}=1.0$.	\%			
6	(a) What is priming? Why it is required in the centrifugal pump? State its importance.	10	2	2	5
	(b) Explain Characteristics curves for the centrifugal pump. Also explain the importance of the term specific speed (Ns).	10	2	3	5
7	(a)Explain: critical, subcritical and supercritical flow in an open channel flow, and explain the specific energy diagram.	10	3	4	6
	(b) Differentiate between gradually varied flow and rapidly varied flow. Also explain Hydraulic jump.	10	3	4	6

KT- EXAMINATION JAN - 2023

Program: S.Y.B. Tech. Civil- LemM
Course Code: PC - BTC - 406
Course Name: Transportation Engineering
Duration: 3 hours
Maximum Points: 100
Semester: IV
(i) Assume suitable data if required

Q.No.	Questions	Points
Q.1.		
a	Discuss suitability of Different mode of transportation.	05
b	Discuss with neat sketch Take off climb surface	05
c	Enumerate the various factors you would like to keep in mind while selecting suitable site for the Airport.	10
Q.2.		
a	What are the assumption made while calculating the basic length of runway?	05
b	Discuss about A irport Drainage system	05
c	The average wind data collected at particular site is given bellow in Table - 1 . Determine calm period, orientation of runway and wind coverage. Plot wind rose diagram considering direction and total duration. if another runway is oriented at right angle to above runway than what will be the total wind coverage.	10
Q.3.		
a	What is gauge. Discuss different types of gauge	06
b	What do you meant by creep of rail. How to measure it.	06
c	Using the sleeper density of $(n+5)$ estimate the number of rail and sleepers required for construction of 1 km long (i) broad gauge (ii) meter gauge railway track. Also, calculate the number of fish plate and fish bolt required for construction.	08
Q.4.		
a	Derive the relationship between superclevation, speed, Gauge and radius of circular curve. What are its limiting values for different gauges.	10

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING

(Government Aidded Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

KT- EXAMINATION JAN - 2023

b	A 6° curve branches from 4^{0} main curve in opposite direction in a layout of broad gauge yard. If the speed on branch line is restricted to $25 \mathrm{~km} / \mathrm{hr}$. determine the restricted speed on main line.	10
Q.5.		
a	Discuss with sketch of left hand turnout showing important component part of point and crossing.	08
b	Discuss with sketch different types of joints	06
c	How will you decide the location of Exit Taxiway.	06
Q.6.		
a	Explain the term sleeper its function and requirements	06
b	Discuss Classification of station based on operational characteristics.	06
c	Draw a neat sketch of single line railway track in cutting and embankment.	08
Q.7.		
a	Discuss differeñt sys̄ems of signaling	06
b	Discuss the requirement of railway station	06
c	Design an exit taxiway joining runway and parallel main taxiway. The total angle of turn is 30° and turning speed $95 \mathrm{~km} / \mathrm{hr}$. draw a neat sketch showing all design elements.	08

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
KT- EXAMINATION JAN - 2023
Q.2. (c) Table - I

Wind direction	Duration of wind in percentage		
	$6.4 \mathrm{to25} \mathrm{~km} / \mathrm{hr}$	$25 \mathrm{TO} 50 \mathrm{~km} / \mathrm{hr}$	$\mathbf{5 0}$ to $\mathbf{7 5} \mathbf{~ k m} / \mathrm{hr}$
N	4.5	1.3	0.1
NNE	3.3	0.8	0
NE	1.8	0.1	0
ENE	2.7	0.3	0
E	2	0.4	0
ESE	5.3	0.1	0
SE	6.3	3.2	0.1
SSE	7.4	7.7	0.3
S	4.6	2.2	0
SSW	2.4	0.9	0
SW	1.1	0.1	0
WSW	3.6	0.4	0
W	1.8	0.3	0
WNW	5.9	2.6	0.2
NW	5.8	2.4	0.2
NNW	6.8	4.9	0.3

Bharatiya Vidya Bhavan's
 SARDAR PATEL COLLEGE OF ENGINEERING
 (An Autonomous Institution Affiliated to University of Mumbai)

Munshi Nagar Andheri (W) Mumbai 400058

Previous Semester Examination
December 2022
Max. Marks: 100
Class: S.Y. B. Tech
 Name of the Course: Environmental Engineering I

Course Code: BTC407

Instructions:

Q1 is compulsory. Attempt any four questions out of remaining five
Draw neat sketches/diagrams wherever required
Assume suitable data if necessary and state them clearly
Figure on right indicate maximum points for the given question, course outcomes attained, Bloom's Level and Performance Indicators

(b)	Lime and soda were used for softening in Rajkot for treatment of following impurities $\mathrm{CaCO}_{3}=70 \mathrm{mg} / \mathrm{L} ; \mathrm{MgSO}_{4}=20 \mathrm{mg} / \mathrm{L} ; \mathrm{NaCl}=130$ $\mathrm{mg} / \mathrm{L} ; \mathrm{MgCl}_{2}=20 \mathrm{mg} / \mathrm{L}$. Compute the quantities of chemicals required for Rajkot in year 2040. Assume soda ash and lime purity 90\%. (Consider data in Q1(a)) and water demand as 1001 pec .	(10)	$\begin{aligned} & \mathrm{CO} 2 \\ & \mathrm{CO} \end{aligned}$	3-4	3.2.1
Q4	Answer any two of the following questions	(20)			
(a)	Explain the need of filtration and filtration mechanism. Design rapid sand filter for (size and underdrainage system) for the population for the year 2040 for Rajkot town having water demand 100 pped.	(15)	$\begin{aligned} & \mathrm{CO1} \\ & \mathrm{CO} 4 \end{aligned}$	3-5	5.3.2
(b)	Explain the characteristic of a good disinfectant. Find chlorine consumed in $\mathrm{kg} /$ day and chlorine dosage in mg / L for the city of Rajkot in 2040 if the residual chlorine is $0.2 \mathrm{mg} / \mathrm{L}$ and a chlorine demand is $0.6 \mathrm{mg} / \mathrm{L}$ and average water demand of 100 lpcd .	(05)	$\begin{aligned} & \mathrm{CO} 4 \\ & \mathrm{CO} \\ & 4 \end{aligned}$	2-4	5.4.1
Q5	Answer the questions	(20)			
(a)	Explain lime soda process for hardness removal	(05)	$\mathrm{CO3}$	2	2.3.1
(b)	Explain any 3 techniques to treat taste, color and odor in detail	(10)	CO3	2	2.3.2
(c)	Explain chlorination, De-chlorination and super chlorination	(05)	CO3	2,3	4.3.2
Q6	Write notes on any four	(20)	CO2	2	2.3.3
(i)	Electro-dialysis	(05)			
(ii)	Reverse osmosis	(05)			
(iii)	Ion-exchanges	(05)			
(iv)	Iron and Manganese in water and their removal	(05)			
(v)	Jar test	(05)			
Q7	Answer the questions (any 10)	(10)	CO1	1	1.2.1
(i)	Write parameters impacting disinfection				
(ii)	Write parameters impacting sedimentation	(02)			
(iii)	Enumerate filter troubles and give reason for filter troubles	(02)			
(iv)	Write types of intake structures used in water management	(02)			
(v)	Enumerate criteria to decide placement of intake structures	(02)			
(vi)	Explain negative head in filtration	(02)			
(vii)	Enumerate methods for population forecasting	(02)			
(viii)	Enumerate various physical, chemical and biological parameters for water testing	(02))
(ix)	Enumerate methods for desalination	(02)			
(x)	Enumerate names of coagulants used	(02)			
(xi)	Enumerate the disinfectants	(02)			
(xii)	Enumerate types of Settling tanks	(02)			

Formula Sheet

$\begin{aligned} & P_{n}=P_{o}\left[1+\frac{r}{100}\right]^{n} \\ & P_{n}=P_{o}+n \bar{x}+\frac{n(n+1)}{2} \bar{y} \\ & \log _{e}\left[\frac{P_{s}-P}{P}\right]-\left[\frac{P_{s}-P_{o}}{P_{o}}\right]=-k P_{s}^{*} t \\ & P_{n}=\left(P_{o}+n \bar{x}\right) \\ & r=\sqrt[t]{r_{1} * r_{2} * r_{3} * \ldots . . . * r_{n}} \end{aligned}$	$\begin{aligned} & \hline \mathrm{Al}=27 \\ & \mathrm{Ca}=40 \\ & \mathrm{C}=12 \\ & \mathrm{O}=16 \\ & \mathrm{~S}=32 \\ & \mathrm{Cl}=35.5 \\ & \mathrm{H}=1 \\ & \mathrm{Na}=23 \\ & \mathrm{Fe}=55.5 \\ & \mathrm{Mg}=24 \\ & \mathrm{Si}=14 \\ & \mathrm{H}: \mathrm{D}=2: 1 \end{aligned}$	$\begin{aligned} & \text { WLR }=\mathrm{Q} / \mathrm{B} \\ & \mathrm{WLR}=\mathrm{Q} / 2 \pi \mathrm{R} \\ & \mathrm{DT}=\mathrm{V} / \mathrm{Q} \\ & \mathrm{SOR}=12-20 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \\ & \mathrm{~V}=0.849 \mathrm{CR} \mathrm{R}^{0.63} \mathrm{~S}^{0.54} \\ & \mathrm{SOR}=24.30 \mathrm{~m}^{3} / \mathrm{d} / \mathrm{m}^{2} \\ & \mathrm{WLR}=200 \mathrm{~m}^{3} / \mathrm{m}^{2} / \mathrm{d} \\ & \mathrm{DT}=20 \text { to } 50 \mathrm{~min} \end{aligned}$ Minimum distance between successive baffle walls $0.45 \mathrm{~m}(\mathrm{~d})$ Clear opening at end of baffle and basin wall $=1.5$ (d)
SA=volume/SOR	$\begin{aligned} & G=300-700 \mathrm{~s}^{-1} \\ & 0.5 \mathrm{~min} \text { to } 1 \mathrm{~min} \end{aligned}$	$\begin{aligned} & \mathrm{P}=\frac{1}{2} C_{d} \rho \cdot A_{p} \cdot \mathrm{v}_{\mathrm{r}}^{3} \\ & C_{d}=1.8 \text { for flat paddles } \\ & \rho=998 \mathrm{~kg} / \mathrm{m}^{3} \\ & v_{r}=(1-0.25) v_{p} \end{aligned}$
Ratio of length to diameter of lateral ≤ 60 Spacing of laterals= spacing of orifices $=150$ to 300 mm Dia of perforations 5 to 12 mm (spacing 80 mm for 5 and 200 mm for 12 mm) Total area of perforations ≤ 0.5 Total c/s area of laterals Total area of perforation $=0.002$ to 0.003 Entire filter area Area of manifold $=1.5$ to 2 times laterals Rate of filtration $=300$ to $5001 / \mathrm{hr} / \mathrm{m}^{2}$ Rate of filtration $=3000-60001 / \mathrm{hr} / \mathrm{m}^{2}$ Max. demand $=1.8 \mathrm{Q}$	$\begin{aligned} & \begin{array}{l} \mathrm{v}_{\mathrm{s}}=\frac{1}{18} \frac{g}{v}\left(S_{s}-1\right) \\ * d^{2} \end{array} \\ & \text { Value } \begin{array}{c} \text { V=1.002 } \times 10^{-6} \mathrm{~m}^{2} / \mathrm{sec} \\ v_{d} \\ =\sqrt{\left(\frac{8 \beta}{f^{\prime}}\right)\left(S_{s}-1\right) d g} \\ f^{\prime}=0.025-0.03 \\ g=9.8 \mathrm{~m} / \mathrm{s}^{2} \end{array} \end{aligned}$	$\begin{aligned} & \mathrm{Q} / \mathrm{A} ; \mathrm{Q} / \text { perimeter; } \mathrm{Q} / \mathrm{b} ; \mathrm{V} / \mathrm{Q} \\ & \mathrm{~V}=\mathrm{D}^{2}(0.011 \mathrm{D}+0.785 \mathrm{H}) \\ & \text { Rate }=3000-6000 \mathrm{litre} / \mathrm{hr} / \mathrm{m} 2 \\ & \mathrm{G}^{2}=\mathrm{P} / \mu \mathrm{V}=\mathrm{C}_{\mathrm{D}} \mathrm{Apv}^{3} / 2 \mu \mathrm{~V} \end{aligned}$
$\begin{aligned} & G=\sqrt{\frac{P}{\mu^{*} V}} \\ & \mu=1.0087^{*} 10^{-3} \mathrm{Ns} / \mathrm{m}^{2} \end{aligned}$	$P=F_{D}{ }^{*} \nu_{r}$	$G * t=\frac{V}{Q} * \sqrt{\frac{P}{\mu V}}=\frac{\sqrt{P V / \mu}}{Q}$

ALL THE BEST

PREVIOUS SEM END SEMESTER EXAMINATION，DECEMBER－2022

Program：B．Tech．in Civil Engineering
Class：Second Year B．Tech．（Civil）
Course code：MC－BTC002
Name of the Course：Indian Traditional Knowledge

Date：04／01／2023
Duration： 3 Hr．
Max．Points： 100
Semester：IV

Instructions：

－Answer ANY FIVE Questions．
－Give suitable illustrative examples to justify your answers wherever necessary．

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Question	㫛	0	品	E	粊
Q． 1	a）Justify：＇India is the richest prize of war＇with suitable examples． b）Justify：＂India is the unique country with unity in diversity as its core strength since ancient times＂giving suitable examples．	$\begin{aligned} & (10) \\ & (10) \end{aligned}$	1	VI VI	$\begin{aligned} & 6.1 .1 \\ & 6.1 .1 \end{aligned}$	1 1
Q． 2	a）List：Names of The Vedas and Upvedas．Justify：＂Vedas are the eternal source of knowledge for the entire mankid＂． b）Justify：＂Nature is the supreme teacher（Guru）＂describing learnings of Adi yogi Shri Dattatreya from any 03 elements in nature．	$\begin{aligned} & \hline(10) \\ & (10) \end{aligned}$	1	I，VI VI	6.1 .1 6.1 .1	2 2
Q． 3	a）Explain：With two examples the greatness of wisdom of ancient indian scholars in the field of mathematics and astronomy． b）Discuss：Superior Knowledge of ancient Indian sages explaining the valuable contribution of Maharshi Kanad．	$\begin{aligned} & (10) \\ & (10) \end{aligned}$	2 2	II V	6．1．1	3 3
Q． 4	a）Justify ：Greatness of Indian lifestyle and health care practices since ancient times in context of global pandemic of Covid－19． b）Justify：＂Yoga is the key for long life with good health＂in context of ancient as well as modern India．	$\begin{array}{\|l\|} \hline(10) \\ (10) \end{array}$	2 2	VI VI	6．1．1	4 4
Q． 5	a）List：Names of various Indian classical dance forms and Describe：Any two of them with its significance． b）List：Various traditional art forms of ancient Indian and Describe：any one of them．	$\begin{array}{\|l\|} \hline(10) \\ (10) \end{array}$	3 3	I，V I，V	6．1．1	5 5
Q． 6	a）Explain：Rich heritage of Indian Traditional Languages since ancient times and significance of any one language of India． b）Discuss：Significance and teachings of any one great epic of ancient Indian tradition．	$\begin{aligned} & (10) \\ & (10) \end{aligned}$	3 3	II V	6．1．1	6
Q． 7	a）Discuss：In brief，life，work，philosophy and contribution of Sant Dnyaneshwar Maharaj． b）Discuss：In brief，life，work，philosophy and teachings of Bhagwan Mahavir Vardhaman for the entire mankind．	（10）	4	V V	6．1．1	7 7

